Image Denoising Using Bandelets and Hidden Markov Tree Models ∗
نویسنده
چکیده
In this paper, both the marginal and joint statistics of second generation Orthogonal bandelet transform (OBT) coefficients of natural images are firstly studied, and the highly non-Gaussian marginal statistics and strong interscale, interlocation and interdirection dependencies among OBT coefficients are found. Then a Hidden Markov tree (HMT) model in OBT domain which can effectively capture all dependencies across scales, locations and directions is developed. The main contribution of this paper is that it exploits the edge direction information of OBT coefficients, and proposes an image denoising algorithm (B-HMT) based on HMT model in OBT domain. We apply B-HMT to denoise natural images which contaminated by additive Gaussian white noise, and experimental results show that B-HMT outperforms the Wavelet HMT (W-HMT) and Contourlet HMT (C-HMT) in terms of visual effect and objective evaluation criteria.
منابع مشابه
Bayesian Tree-Structured Image Modeling
Wavelet-domain hidden Markov models have proven to be useful tools for statistical signal and image processing. The hidden Markov tree (HMT) model captures the key features of the joint statistics of the wavelet coeÆcients of real-world data. One potential drawback to the HMT framework is the need for computationally expensive iterative training (using the EM algorithm, for example). In this pa...
متن کاملDenoising in Wavelet Domain Using Probabilistic Graphical Models
Denoising of real world images that are degraded by Gaussian noise is a long established problem in statistical signal processing. The existing models in time-frequency domain typically model the wavelet coefficients as either independent or jointly Gaussian. However, in the compression arena, techniques like denoising and detection, states the need for models to be nonGaussian in nature. Proba...
متن کاملHidden Markov Tree Modeling of the Uniform Discrete Curvelet Transform for Image Denoising
The uniform discrete curvelet transform (UDCT) is a modified version of the curvelet transform based on the filter bank implementation in the frequency domain. In this project, the hidden Markov tree model, which captures the parent-children dependency, is used for the uniform discrete curvelet transform. Also, the image denoising results are shown as an application of the modeling.
متن کاملBivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency
Most simple nonlinear thresholding rules for wavelet-based denoising assume that the wavelet coefficients are independent. However, wavelet coefficients of natural images have significant dependencies. In this paper, we will only consider the dependencies between the coefficients and their parents in detail. For this purpose, new non-Gaussian bivariate distributions are proposed, and correspond...
متن کاملBayesian Wavelet-Domain Image Modeling Using Hidden Markov Trees
Wavelet-domain hidden Markov models have proven to be useful tools. for statistical signal and image processing. The hidden Markov tree ( H M T ) model captures the key features of the joint statistics of the wavelet coeficients of real-world data. One potential drawback to the H M T framework is the need for computationally expensive iterative training (using the E M algorithm, fo r example). ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010